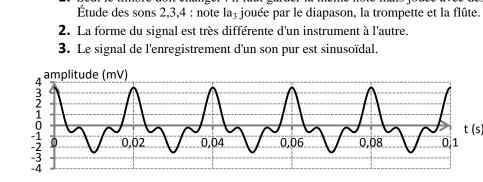
CHAPITRE 2 : CARACTÉRISTIQUES DES ONDES

THÈME 1 : ONDES ET MATIÈRE

ACTIVITÉ 3

TP: Analyse de sons

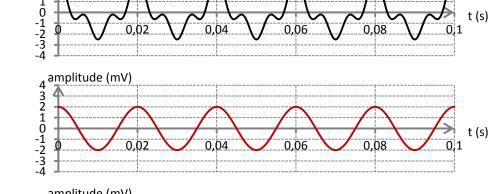
A. ENREGISTREMENT D'UN SON


fichier	son1.ltp	son2.ltp	son3.ltp	son4.ltp	son5.ltp	son6.ltp
nature du son	bruit	la ₃ diapason	la ₃ trompette	la ₃ flûte	do ₃ trompette	la ₄ trompette
période (ms)	non	2,27	2,26	2,27	3,78	1,13
fréquence (Hz)	périodique	440	442	440	265	885

B. HAUTEUR D'UN SON

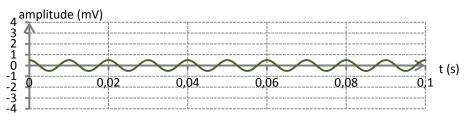
- 1. Seule la hauteur de la note doit changer : il faut garder le même instrument mais avec des notes différentes. Étude des sons 3, 5 et 6 joués par la trompette.
- **2.** Son 3: 8T \leftrightarrow 18,097ms d'où $\underline{T = 2,26ms}$ et $f = \frac{1}{T} = \frac{1}{2,26.10^{-3}} = \underline{442Hz}$
- **3.** Plus une note est aigue, plus la fréquence du signal est élevée. Plus une note est grave, plus la fréquence du signal est basse.
- **4.** D'après le tableau $f(la_3) = \underline{440 \text{Hz}}$ d'où $T = \frac{1}{f} = \frac{1}{440} = 2,27.10^{-3} \text{ s} = \underline{2,27 \text{ms}}$

C. TIMBRE D'UN SON


- 1. Seul le timbre doit changer : il faut garder la même note mais jouée avec des instruments différents. Étude des sons 2,3,4 : note la₃ jouée par le diapason, la trompette et la flûte.
- 2. La forme du signal est très différente d'un instrument à l'autre.
- 3. Le signal de l'enregistrement d'un son pur est sinusoïdal.

⇐ Son musical étudié : S

fréquence : f = 1 / 0.020 = 50Hz


 $S = S_1 + S_2 + S_3$

\Leftarrow <u>Harmonique n°1</u> ou fondamental : S₁

fréquence : $f_1 = 1 / 0.020 = 50$ Hz

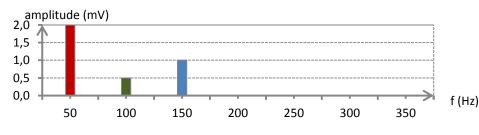
amplitude: 2,0mV $S_1(t) = 2,0.\cos(2\pi \times 50 \times t)$

\Leftarrow Harmonique n°2: S₂

fréquence : $f_2 = 1 / 0.010 = 100$ Hz = $2.f_1$

amplitude: 0,50mV

 $S_2(t) = 0.50.\cos(2\pi \times 100 \times t)$



\Leftarrow Harmonique n°3: S₃

fréquence : $f_3 = 1 / 0,0066 = 150Hz = 3.f_3$

amplitude: 1,0mV

 $S_3(t) = 1,0.\cos(2\pi \times 150 \times t)$

← Transformée de Fourier

- **4.** La fréquence du son est la fréquence du fondamental ou harmonique n°1 : fréquence du premier pic.
- **5.** L'instrument qui nécessite le plus d'harmoniques pour être restitué est la trompette.
- **6.** Le spectre d'un son pur (sinusoïdal) ne présente qu'un seul pic.
- **7.** Tableau récapitulatif :

	signal temporel	spectre en fréquences		
hauteur du son	fréquence du son déterminée à partir de la mesure de la période du signal	fréquence du son déterminée à partir de la fréquence du premier pic (fondamental)		
timbre du son	lié à l'allure du signal	lié au nombre et à l'amplitude relative des harmoniques		

D. NIVEAU D'INTENSITÉ SONORE

- **1.** L'intensité sonore est multipliée par 2 lorsque la deuxième enceinte est allumée mais le son perçu ne semble pas "deux fois plus fort".
- **2.** Son d'origine : $L = 10.log \left(\frac{I}{I_0}\right)$

$$\underline{\text{Si l'intensit\'e sonore double}}, \text{ le niveau sonore devient : } L' = 10 log \left(2 \frac{I}{I_0}\right) = \underbrace{10 log \left(2\right)}_{3,0 \text{dB}} + \underbrace{10 log \left(\frac{I}{I_0}\right)}_{3,0 \text{dB}} = L + 3,0 \text{dB}$$

Le niveau d'intensité sonore a augmenté de 3,0dB.

3.
$$L = 10.log\left(\frac{I}{I_0}\right)$$
 d'où en isolant le $log: log\left(\frac{I}{I_0}\right) = \frac{L}{10}$

$$puis \ en \ utilisant \ la \ fonction \ réciproque \ du \ log: \qquad 10^{\frac{\log\left(\frac{1}{I_0}\right)}{2}} = 10^{\frac{L}{10}} \quad \ soit \quad \frac{I}{I_0} = 10^{\frac{L}{10}} \quad \ et \qquad I = I_0.10^{L/10}$$

$$I = 1,0.10^{-12} \times 10^{70/10} = 1,0.10^{-5} \text{ W.m}^{-2}$$