La découverte de la radioactivité artificielle et ses applications

- 1. a. La particule α est un noyau d'hélium 4 de symbole 4_2 He.
- **b.** $^{226}_{88}$ Ra $\rightarrow ^{222}_{86}$ Rn + $^{4}_{2}$ He
- c. Le phosphore 30 est radioactif β+. Son équation de désintégration s'écrit : ${}^{30}_{15}P \rightarrow {}^{30}_{14}Si + {}^{0}_{1}e$

d.
$$N(t = 13 \text{ min}) = 1000 \times \exp\left(-\ln(2) \times \frac{13 \times 60}{3 \times 60 + 15}\right)$$

= 63 noyaux

2. a. La demi-vie est le temps au bout duquel la moitié des noyaux présents initialement se sont désintégrés, ou que l'activité initiale a été divisée par deux.

Par lecture graphique : $t_{1/2} = 6$ h.

b.
$$A(t = 120 \text{ h}) = 400 \times \exp\left(-\ln(2) \times \frac{120}{6}\right)$$

= $4 \times 10^{-4} \text{ MBq} = 4 \times 10^2 \text{ Bq}.$

c.
$$A(t = 3.5 \text{ h}) = 400 \times \exp\left(-\ln(2) \times \frac{3.5}{6}\right) = 267 \text{ MBq}.$$

La durée écoulée au bout de $20 \times t_{1/2}$ est égale à 120 heures soit 5 jours $(\frac{120}{24} = 5)$.

La date associée, à partir du lundi 15 heures, est le samedi 15 heures.

La datation à l'uranium 238

1. Par détermination graphique : $t_{1/2} = 4.5 \times 10^9$ an.

$$\lambda = \frac{\ln(2)}{t_{1/2}} = \frac{\ln(2)}{4.5 \times 10^9} = 1.5 \times 10^{-10} \text{ an}^{-1}.$$

2. Le nombre initial de noyaux d'uranium 238 : $N_0 = 5.0 \times 10^{12}$. L'équation différentielle vérifiée par N(t) peut s'écrire :

$$\frac{\mathrm{d}N(t)}{\mathrm{d}t} = -\lambda N(t).$$

La fonction dérivée $\frac{dN(t)}{dt}$ est proportionnelle à la fonction N.

La solution est donc de la forme : $N(t) = A \times e^{-\lambda \times t}$.

On exprime la condition initiale :

$$N(0) = N_0 \iff A = N_0 = 5,0 \times 10^{12}$$

La solution s'écrit : $N(t) = N_0 \times e^{-\lambda \times t}$

soit
$$N(t) = 5.0 \times 10^{-12} \times e^{-1.5 \times 10^{-10} \times t}$$
.

3.
$$N_0 = N(t) + N_{Pb}$$
.

4.
$$N(t) = N_0 - N_{Pb} = 4.5 \times 10^{12}$$

soit t égal à 0.5×10^9 an = 5×10^8 an (500 millions d'années). Cela est bien compatible avec la fin de la première ère interglaciaire.

Préparation à l'ECE

- **1.** Il faut sélectionner le technétium en écrivant son symbole Tc dans la barre de sélection.
- **2.** Le noyau fils pour une radioactivité β^+ est situé en diagonale sur la ligne en dessous, à droite et pour une radioactivité β^- est situé en diagonale sur la ligne au-dessus, à gauche.

Les isotopes cherchés sont : ^{94}Tc ; ^{95}Tc ; ^{96}Tc ; ^{97}Tc ; ^{98}Tc ; ^{99}Tc ; ^{100}Tc ; ^{101}Tc ; ^{102}Tc .

3. Le technétium ne possède aucun isotope stable, c'est la raison pour laquelle il a été identifié en dernier.