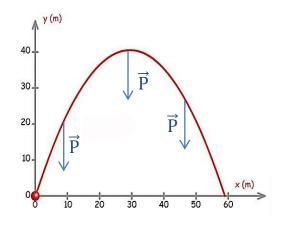
### **CHAPITRE 4: MOUVEMENTS ET FORCES**


THÈME 1 : L'UNIVERS

# ACTIVITÉ 6 TP: SATELLISATION

### A. LANCER D'UN PROJECTILE

- **1.** Le projectile est soumis à :
  - son poids  $\overrightarrow{P}$
  - frottements de l'air  $\vec{f}$
- **2.** Le poids est une force verticale orientée vers le bas. Sa norme P = m.g reste constante pendant le tir. La trajectoire est une parabole.
- **3.** Paramètres susceptibles d'avoir une influence sur la portée :
  - angle de tir  $\alpha$ ,
  - vitesse initiale v<sub>0</sub>,
  - et intensité de la pesanteur g.

La masse m n'influe pas sur la portée du tir



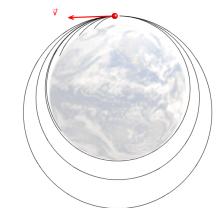
### 4. Influence de la vitesse initiale sur la portée du tir

 $\alpha = 30^{\circ} \Rightarrow$  Pour 3 valeurs différentes de la vitesse initiale, simuler la trajectoire du projectile sur Terre.

| vitesse initiale v <sub>0</sub> (m.s <sup>-1</sup> ) | 10  | 20   | 30   |  |  |
|------------------------------------------------------|-----|------|------|--|--|
| portée (m)                                           | 8,8 | 35,3 | 79,5 |  |  |

Plus la vitesse initiale est grande, plus la portée augmente.

### 5. Influence de l'angle de tir sur la portée du tir


 $v_0 = 30 \text{m/s} \Rightarrow \text{Pour 5}$  valeurs différentes de l'angle de tir, simuler la trajectoire du projectile sur Terre.

| angle de tir (°) | 15   | 30   | 45   | 60   | 75   |
|------------------|------|------|------|------|------|
| portée (m)       | 45,9 | 79,5 | 91,7 | 79,5 | 45,9 |

La portée est maximale pour un angle de tir de 45°.

### B. SATELLISATION

Lorsque l'on augmente la vitesse initiale, le projectile tombe de plus en plus loin. Pour une vitesse supérieure à 7,24km.s<sup>-1</sup>, l'objet ne retombe plus au sol : il est satellisé.



## C. SATELLITES GÉOSTATIONNAIRES

#### 1. Définition

géo: la Terre

stationnaire: qui ne bouge pas

satellite géostationnaire : satellite immobile par rapport à un observateur terrestre

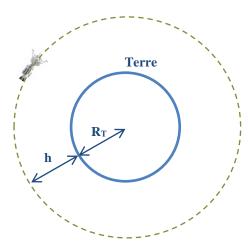
### 2. Caractéristiques orbitales d'un satellite géostationnaire

- ⇒ sens de rotation : celui de la Terre
- $\Rightarrow$  inclinaison (°):  $0^{\circ}$  (plan équatorial)
- ⇒ période T (s) : <u>85997s</u>
- ⇒ altitude h (distance par rapport au sol) du satellite géostationnaire :

h = 35732km

⇒ distance r du satellite géostationnaire par rapport au <u>centre de la Terre</u> :

 $r = R_T + h = \underline{42112km}$ 


#### 3. Vitesse d'un satellite géostationnaire

Le satellite fait un tour complet pendant une durée égale à T : périmètre du cercle de rayon r.

$$d = 2\pi r = 2\pi \times 42112 = 264597 \text{km} = 2,65.10^5 \text{km}$$

Vitesse du satellite en km.s<sup>-1</sup> : 
$$v = \frac{distance}{durée} = \frac{d}{T} = \frac{264597}{85997} = \frac{3,08 \text{km.s}^{-1}}{85997}$$

**4.** Deux utilisations des satellites géostationnaires : météorologie, transmission TV

