DEVOIR DE SCIENCES-PHYSIQUES

GRANDEURS ET UNITÉS (/6)

1. Compléter le tableau ci-dessous (le sujet est à rendre avec la copie) :

Préfixe	femto	pico	nano	micro	milli	centi	déci	déca	hecto	kilo	mega	giga
Symbole	f	р	n	μ	m	c	d	da	h	k	M	G
10 ⁿ	10^{-15}	10^{-12}	10^{-9}	10^{-6}	10^{-3}	10^{-2}	10^{-1}	10^{1}	10^{2}	10^{3}	10^{6}	10^{9}

Rappel: la notation scientifique est l'écriture d'un nombre sous la forme $a \times 10^n$ avec a un nombre décimal tel que : $1 \le a < 10$

- **2.** Écrire en notation scientifique les nombres suivants :
 - (a) $0,00034 = 3,4.10^{-4}$ (b) $936 = 9,36.10^{2}$

- **3.** Écrire en décimal les nombres suivants :
 - (e) $5,45.10^{-3} = 0,00545$ (f) $3,8.10^2 = 380$
- 4. Convertir les longueurs suivantes en mètre en utilisant l'écriture scientifique :

 - (8) $60 \text{pm} = 6,0.10^{1}.10^{-12} \text{m} = 6,0.10^{1-12} \text{m} = 6,0.10^{1-12} \text{m}$ (b) $6,4.10^{3} \text{Gm} = 6,4.10^{3}.10^{9} \text{m} = 6,4.10^{3+9} \text{m} = 6,4.10^{12} \text{m}$

B. Manipuler une expression littérale (/3)

1. Compléter le tableau ci-dessous (le sujet est à rendre avec la copie) :

Formule du cours	Je connais	Je cherche	Expression littérale pour trouver la grandeur cherchée		
$v = \frac{d}{t}$	d et v	t	$t = \frac{d}{v}$		
$U = R \times I$	U et I	R	$R = \frac{U}{I}$		

- $\begin{aligned} \textbf{2.} \quad & t_{m} \times V_{m} = t_{f} \times V_{f} \quad donc: \quad \left| V_{m} = \frac{t_{f} \times V_{f}}{t_{m}} \right| \\ \textbf{3.} \quad & F = \frac{G \times m_{A} \times m_{B}}{d^{2}} \quad donc: \quad \left| m_{A} = \frac{F \times d^{2}}{G.m_{B}} \right| \end{aligned}$

NE PAS DÉPASSER LA DOSE PRESCRITE (/4)

Sur la notice d'un médicament à utiliser en cas de bronchite et se présentant sous la forme d'une solution aqueuse, il est indiqué que la masse de carbocystéine dissoute est de $m_0 = 2,00g$ dans une solution de volume $V_0 = 100 \text{mL} = 0,100 \text{L}$.

- 1. Dans ce médicament le solvant est l'eau et le soluté la carbocystéine
- **2.** Concentration en masse du médicament en carbocystéine : $t = \frac{m_0}{V_0} = \frac{2,00}{0,100} = \frac{20,0gL^{-1}}{0,100}$
- **3.** Masse de carbocystéine apportée par une cuillère : $t = \frac{m}{V}$ doc : $\underline{|m=t\times V|} = 20,0\times 5,0.10^{-3} = 0,100g = \underline{100mg}$
- 4. À chaque prise, il faut administrer 100mg de carbocystéine soit une cuillère de 5,0mL du médicament. Avec deux prises, l'enfant aura bien reçu 200mg de carbocystéine.

D. CINQ FOIS MOINS CONCENTRÉE (/7)

On dispose d'une solution S_0 de chlorure de sodium à la concentration en masse $t_0 = 36g.L^{-1}$.

On veut préparer 100mL = 0,100L de solution S_1 de chlorure de sodium cinq fois moins concentrée.

- 1. L'opération consistant à abaisser la concentration d'une solution s'appelle une dilution.
- **2.** Facteur de dilution : $F = \frac{t_{\text{mère}}}{t_{\text{fille}}} = \frac{t_0}{t_1} \quad \text{donc} : \quad \left[t_1 = \frac{t_0}{F} = \frac{36}{5,00} = \frac{7,2g.L^{-1}}{5,00} \right]$ **3.** Masse de chlorure de sodium dans la solution S_1 : $m_1 = t_1 \times V_1 = 7,2 \times 0,100 = \frac{0.72g}{5}$
- **4.** Facteur de dilution : $F = \frac{V_{\text{fille}}}{V_{\text{mère}}} = \frac{V_1}{V_0}$ donc : $V_0 = \frac{V_1}{F} = \frac{100}{5,0} = \frac{20,0\text{mL}}{5}$ Il faudra prélever 20,0mL de solution mère.
- **5.** ① Prélever 20,0mL de solution mère avec une pipette jaugée de 20,0mL.
 - ② Les introduire dans une fiole jaugée de 100,0mL.
 - 3 Ajouter de l'eau distillée au 34 et agiter.
 - 4 Ajouter de l'eau distillée jusqu'au trait de jauge et agiter.